Contents

1 Introduction

11 Disclaimer. e e
1.2 Motivation
1.3 nstallation
131 Windows
132 OSX . . o e e
1.3.3 LinuX . .. e e e
1.4 SpyderIDE
1.41 Createaproject
1.4.2 Projectexplorer,
1.43 Variableexplorer L
1.5 Troubleshooting,
1.51 Downloadproblems
1.5.1.1 Cause e

1.51.2 Solution

1.5.2 Noshortcuts
1.5.2.1 Cause e

1.5.22 Solution,

1.5.3 Failedtocreate menusoraddPATH.
1.5.3.1 Solution

1.5.4 Conda:commandnotfound.
1.5.4.1 Cause e e

1542 Solution

1.5.5 Spydererrors. e
1.5.5.1 Cause e e e

15,52 Solution

CONTENTS 2

1.6 Managingpackages. 15
1.6.1 Filteringthe packagestable 16

1.6.2 Findingapackage 17

1.6.3 Installingapackage 17

1.6.4 Upgradingapackage, 17

1.6.5 Installing a different packageversion 18

1.6.6 Removingapackage 18

2 Python 19
21 WhatisPython? 19
211 WhatcanPythondo? 19

212 WhyPython? 19

2.2 SYNtax . ..o e e e 20
2.21 PythonlIndentations 20

222 Comments L 20

2.2.3 Docstrings 21

23 Variables 21
2.31 CreatingVariableso o L. 21

2.3.2 VariablesNames oo .. 22

2.3.3 OutputVariables 22

2.4 Numbers 23
240 Int. . 23

242 Float 23

243 Complex e 24

25 Casting e 24
251 CasttolInt. o 25

252 CasttoFloat 25

2.5.3 CasttoString 25

2.6 SEriNgS. e e e 25
2.7 0perators e e e 27
271 Arithmetic 27

272 Assignment. o 28

2.7.3 Comparisono e e e e 28

274 Llogical 28

275 Membership 28

2.8 Collections 29
2,80 List ..o 29

2.8.1.1 Createalist 29
2.81.2 Accessltems. oo 29

CONTENTS 3

2.9

2.10

21

2.8.1.3 ChangeltemValue 30
2.8.1.4 LoopThroughalist. 30
2.8.1.5 CheckifltemExists 30
2.8.1.6 Listlength. 31
2817 Addltems 31
2.81.8 Removeltem, 31
2819 Casttolist. 32
2.82 Tuples e 32
2.821 CreateaTuple 32
2.8.22 Accessltemso oo, 32
2.8.2.3 ChangeltemValue 32
2.8.2.4 LoopThroughaTuple. 33
2.8.2.5 CheckifltemExists 33
2.8.2.6 TupleLength 33
2827 Addltems 34
2.8.2.8 Removeltem 34
2.8.29 CasttoTuple 34
2.8.3 Dictionary e 34
2.8.31 CreateaDictionary 34
2.8.3.2 Accessingltems 35
2.833 ChangeValues. 35
2.8.3.4 Loop ThroughaDictionary 35
2.8.3.5 CheckifKeyExists. 36
2.8.3.6 DictionarylLength 36
2.8.3.7 Addingltems 36
2.8.3.8 Removingltems 36
If.. Else . . 37
2.9.1 Python Conditions and If statements 37
2.9.2 Indentation. 37
293 Elif ..o 38
294 Else 38
While Loops o o o e e 39
2.10.1 BreakStatement o oL 39
2.10.2 ContinueStatement 39
ForLoops o e 40
2111 Looping ThroughaString 40
2.11.2 BreakStatement o L 4
2.11.3 ContinueStatement oL 41

21114 RangeFunction 41

CONTENTS 4

211.5 EnumerateFunction oL 42

202 Functions e 43
2121 CreatingaFunction 43
2.12.2 CallingaFunction 43
2123 Parameters L L e 43
2.12.4 Default ParameterValue 44
2125 ReturnValues. Lo 44

2303 Modules 44
2131 CreateaModule L. 45
2132 UseaModule 45
2.13.3 VariablesinModule, 45
2.13.4 NamingaModule, 46
2.13.5 Re-namingaModule L. 46
2.13.6 ImportfromModule 46

3 NumPy 48
3.1 WhatisNumPy? e 48
311 NDimensionalArrays e 48

31.2 Usingthelibrary o o 49

3.2 CreatingaNdarrayObject 49
3.21 NumpyArrayo e e e e 49

322 Empty. . . .o 50

323 ZeroS ... e 50
324 0nes ... e 50

325 Full ... e 51

326 Eye ..o e 51

327 Random 51

328 Randomint. o 52

329 LiNSpace e e 52
3.270 Arange ... e 52
3201 Logspace 52
3.212 Reshape 53

3.3 Slicing, Indexing and Conditions, 53
331 Slicing ... 53

332 Indexing 54

333 Conditions 54

3.4 ManipulatingNdarrays oo 54
341 Addition ... 55

3.42 Subtract 55

CONTENTS

343 Multiply
344 Divide.
3.45 Remainder e
346 Power. e e e
347 Dot e e
348 Cross . . . v i i e e e e e
3.4.9 Transpose e e e e e e
3.5 Functions
3.5 Pl e e e
3.52 Sine . . . e e
353 Cosine e
354 Tangent.
355 Round e
3.5.6 Floor e
357 Ceil ..o e
358 Max e e e e e
359 Min ... e e e
3500 Mean e e e
3501 Median e e
4 PyPlot
41 WhatisPyplot?
42 HowtoPyplot. e
4.3 Formattingthestyleofyourplot.
4.4 Plotting with keyword strings
4.5 Plotting with categoricalvariables
4.6 Controllinglineproperties
460 Keywordargs.
4.6.2 Settermethods.
4.7 Working with multiple figuresandaxes
4.8 Workingwithtext
4.8.1 Using mathematical expressionsintext
4.82 Annotatingtext.
4.9 Logarithmicand othernonlinearaxes

4.10 Controlling the legend entries

5 Pandas

5.

WhatisPandas?
511 KeyFeaturesofPandas

55
56
56
56
56
57
57
57
57
57
57
58
58
58
58
58
58
59
59

60
60
60
62
66
67
68
68
69
69
T
73
73
4
7

CONTENTS 6

5.2

5.3

5.4

5.5
5.6
5.7
5.8

512 DataStructures. o 80
5.1.2.1 Series e 81
5122 DataFrame o 81
5123 Panel. 82
Series . . . e e e 82
5.21 CreateaSeries e 82
5.2.1.1 EmptySeries 82
5212 Fromndarray 82
5.21.3 Fromdictionary L. 83
5214 Fromscalar 84
5.2.2 Retrievewith Position 84
5.2.3 Retrievewithindex 85
DataFrame e 85
5.3.1 CreateaDataFrame 85
5.3.1.1 Empty DataFrame 85
531.2 Fromndarray 85
5.3.1.3 Fromdictionaryoflists 86
5.3.1.4 Fromlist of dictionaries 87
5.3.1.5 Fromdictionaryofseries 87
53.2 Addcolumn 88
5.3.3 Deletecolumn 89
5.3.4 Rowselection 89
5341 Bylabel 89
5.3.4.2 Byintegerlocation 90
535 Addrow. 90
5.3.6 Deleterow e 91
Basic functionality 92
541 Headandtail 92
5.4.2 Transpose e e e e 92
543 Shape. 93
544 Size e e 93
Descriptive statistics o 93
Sorting 96
Renamecolumns 96
CSV e e 96
5,81 Write e 97

582 Read 97

List of Figures

1.1 micro benchmark fromjulialang.org
1.2 StackOverflow Survey 2017
1.3 createnew projectdialogbox
1.4 projectexplorer.
1.5 variablesexplorer
1.6 matrixexplorer
1.7 Navigator Environmentso
4.1 lineplotwithonlyxasargument
4.2 lineplotwithxandyasargument
43 customaxisplot
4.4 plotwithreddots
4.5 plotwithkeywordstrings
4.6 plot with categoricalvariables
47 subplot
4.8 textonplotwithcustomlocation
4.9 annotatetextonplot
410 logarithmicplot.
411 plotwithlegends

10
n
12
16

Chapter1

Introduction

1.1 Disclaimer

This documentation is intended for industrial engineering students at the Vrije Uni-
versiteit Brussel. Online version available at engineeringprogramming.now.sh'.

1.2 Motivation

Engineering Programming is more about teaching a fast prototyping tool than pro-
gramming paradigms. Such tools are needed if the bottleneck is programming time
or if solutions that maybe won’t even be successful needs to be tested. This docu-
mentation uses the Python programming language as a fast prototyping tool. The
main reason is that the language has less overhead syntax than conventional ones.
For example, printing "Hello, world!"inJavais:

public class HelloWorld {
public static void main (String[] args) {
System.out.println("Hello, world!");
}

Thttps://engineeringprogramming.show.sh

https://engineeringprogramming.show.sh

CHAPTER 1. INTRODUCTION 2

While in Python:
print("Hello, world!")

The simplicity of Python comes with a price. Python is a dynamically typed language
meaning that values are checked during execution. A poorly typed Python operation
might cause the program to halt or signal an error at run time. In contrast, e.g. C# is a
statically typed language in which programs are checked before being executed. A
poorly typed C# program will be rejected before it starts. Most enterprises cannot offer
software that may halt at run time and prefers to use statically typed programming
languages over dynamic langages. This makes Python less enterprise-friendly than
e.g. C#.

Python is also referred to as a weakly typed language. This generally
means that the language has loopholes in the type system and that
the type system can be subverted by invalidating any guarantees. A
strongly typed language is the inverse thereof.

Strong typed does not mean statically typed, e.g. the C language has
static typing since the code is type checked at compile time but there
are many type loopholes. You can pretty much cast a value to any
type of the same size.

Python has poor performance due to its very dynamic nature. In short, you write
less but Python has more work. For example, the same n-body simulation takes
850 seconds in Python?, 26 seconds in JavaScript3, 22 in Java* and 8 seconds in C++°.
Luckily, if performance is an issue, Python has libraries that under-the-hood uses
efficient programming languages for faster execution. The following figure shows the
performance of several programming languages for scientific computing.

Zhttps://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/python.html
3https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/javascript.html
“https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/java.html
Shttps://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/cpp.html

https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/python.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/javascript.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/java.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/cpp.html

CHAPTER 1. INTRODUCTION 3

10

°
o
10° °
H
2 benchmark
(@]) . rand_mat_mul
2 10 ¢ ; D rand_mat_stat
[} ° O °
2 . pi_sum
T ° H N
E . printfd
E 101 ° 8 ; ° D mandel
S O N o [H quicksort
o o o ° .
o ° ° |:| fib
0] Z s . parse_int
10 8 § H = G 8
°
°
10t
Julia Fortran Go JavaScript PythonMathematica R Matlab ~ Octave

smaller is better

Figure 1.1: micro benchmark from julialang.org

While it isn’t the fastest, Python maintains concise code which reduces the time to
spend programming considerably. Example of how to set from matrix A all smallest
values to 0 without for loop using the NumPy Python library:

A[A == np.amin(A)] = 0

Just imagine doing the same in C++.

Finally, while Python is not the most popular programming language it has an incred-
ible growth since 2012:

CHAPTER 1. INTRODUCTION 4

Growth of major programming languages
Based on Stack Overflow question views in World Bank high-income countries

Y, [
J---Javascript
N ™ java

s ot

% of overall question views each month

0%
2012 2014 2016 2018

Time

Figure 1.2: StackOverflow Survey 2017

The more people use a programming language the more documentation, libraries
and job opportunities there will be.

The above-cited features together with the increasing popularity of Python makes it
a good choice for fast prototyping.

1.3 Installation

Anaconda is data science and machine learning platform for the Python programming
language that is used in this documentation. It is designed to make the process of
creating and distributing projects simple, stable and reproducible across systems

CHAPTER 1. INTRODUCTION 5

and is available on Linux, Windows, and OSX. Anaconda curates major data science
packages for Python. It comes packaged with Anaconda navigator for a GUl experience
for managing libraries, Spyder for an Integrated Development Environment (IDE), and
much more.

The most recent major version of Python is Python 3, which we shall be using in this
documentation. However, Python 2, although not being updated with anything other
than security updates, is still quite popular. When installing Anaconda select the
latest version of Python 3.

If Anaconda is installed correctly, no additional tweaks are needed throughout this
documentation.

1.3.1 Windows

1. Download the Anaconda installer®.
2. Starttheinstaller.

To prevent permission errors, do not launch the installer from the Fa-
vorites folder. If you encounterissues during installation, temporarily
disable your anti-virus software during install, then re-enable it af-
ter the installation concludes. If you installed for all users, uninstall
Anaconda and re-install it for your user only and try again.

w

Click next.

Read the licensing terms and click “l agree”.

5. Select an install for “Just me” unless you are installing for all users (which
require Windows Administrator privileges) and click next.

6. Select a destination folder to install Anaconda and click the next button.

>

Install Anaconda to a directory path that does not contain spaces
or unicode characters. Do not install as Administrator unless admin
privileges are required.

7. Choose whether to add Anaconda to your PATH environment variable. We
recommend not adding Anaconda to the PATH environment variable, since this

Shttps://www.anaconda.com/download/#windows

https://www.anaconda.com/download/#windows

CHAPTER 1. INTRODUCTION 6

10.
11.

12.

can interfere with other software. Instead, use Anaconda software by opening
Anaconda Navigator from the Start Menu.

Choose whether to register Anaconda as your default Python. Unless you plan
on installing and running multiple versions of Anaconda, or multiple versions
of Python, accept the default and leave this box checked.

Click theinstall button. If you want to watch the packages Anaconda s installing,
click show details.

Click the next button.

Optional: To install Visual Studio Code, click the “install Microsoft VS Code”
button. After the install completes click the next button. Or to install Anaconda
without VS Code, click the skip button.

After a successful installation you will see the “Thanks for installing Anaconda”
dialog box.

. Verify the installation by opening Anaconda Navigator from your Windows Start

menu. If Navigator opens, you have successfully installed Anaconda.

1.3.2 O0SX

Download the Anaconda installer’.

Answer the prompts on the introduction, read me and license screens.

Click the install button to install Anaconda in your home user directory (recom-
mended).

OR, click the change install location button to install in another location (not
recommended). On the destination select screen, select install for me only.

If you get the error message “you cannot install Anaconda in this
location”, reselect “install for me only”.

Click the continue button.

Optional: To install Visual Studio Code, click the “install Microsoft VS Code”
button. After the install completes click the continue button. Or to install
Anaconda without VS Code, click the continue button.

After a successful installation you will see the “installation was completed
successfully” dialog box.

Thttps://www.anaconda.com/downloads#macos

https://www.anaconda.com/downloads#macos

CHAPTER 1. INTRODUCTION 7

9.

Verify the installation by opening Anaconda Navigator from Launchpad. If
Navigator opens, you have successfully installed Anaconda.

1.3.3 Linux

bash

. Download the Anaconda installer®.
. Answer the prompts on the introduction, read me and license screens.
. Enter the following to install Anaconda for Python 3.7:

~/Downloads/Anaconda3-5.3.0-Linux-x86_64.sh

Include the bash command regardless of whether or not you are us-
ing bash shell. If you did not download to your downloads directory,
replace ~/Downloads/ with the path to the file you downloaded.
Choose “install Anaconda as a user” unless root privileges are re-
quired.

The installer prompts “In order to continue the installation process, please
review the license agreement.” click enter to view license terms.

Scroll to the bottom of the license terms and enter “yes” to agree.

The installer prompts you to click “enter” to accept the default install
location, CTRL-C to cancel the installation, or specify an alternate installation
directory. If you accept the default install location, the installer displays
PREFIX=/home/<user>/anaconda3 and continues the installation. It may
take a few minutes to complete.

The installer prompts “Do you wish the installer to prepend the Anaconda3
install location to PATH in your /home/<user>/.bashrc ?” Enter “yes”.

If you enter “No”, you must manually add the path. Otherwise Ana-
conda will not work.

Optional: The installer describes Microsoft Visual Studio Code and asks if you

would like to install VS Code. Enter “yes” or “no”. If you selected “yes”, follow
the instructions on screen to complete the VS Code installation.

8https://www.anaconda.com/download/#linux

https://www.anaconda.com/download/#linux

CHAPTER 1. INTRODUCTION 8

9. Close and open your terminal window for the installation to take effect, or you
can enter the command source ~/.bashrec.
10. Verify theinstallation by opening Anaconda Navigator by typing anaconda-navigator
in a terminal window. If Navigator opens, you have successfully installed
Anaconda.

If you install multiple versions of Anaconda, the system defaults to
the most current version, as long as you haven’t altered the default
install path.

1.4 SpyderIDE

Spyder is a scientific environment written in Python, for Python, and designed by and
for scientists, engineers and data analysts. It features a combination of the editing,
analysis, debugging, and profiling functionality of a comprehensive development tool
with the data exploration, interactive execution, deep inspection, and visualization
capabilities of a scientific package. Furthermore, Spyder offers built-in integration
with many popular scientific packages, including NumPy, SciPy, Pandas, IPython,
QtConsole, Matplotlib, SymPy, and more.

Spyder IDE is included in Anaconda.

1.4.1 Create a project

To create a Project, click the “New Project” entry in the “Projects” menu, choose
whether you like to associate a project with an existing directory or make a new one,
and enter the project’s name and path:

CHAPTER 1. INTRODUCTION 9

Froa

19 Create new project

(®) Mew directory () Existing directory

Project name |My.¢\wesomeProjev:t |

Location |C:HLJSErs‘\TesﬁJserWyAwesomeProject |

Project type |Empty project b

Figure 1.3: create new project dialog box

1.4.2 Project explorer

Once a project is opened, the “Project Explorer” pane is shown, presenting a tree
view of the current project’s files and directories. This pane allows you to perform all
the same operations as a normal file explorer.

CHAPTER 1. INTRODUCTION

v I= Spyder
& Data
& Doc Screenshots
& PyRometer
v & spyder
& .github
& conda.recipe

& continuous_integration
& doc

& img_src

B requirements

B rope_profiling

B scripts
v B spyder
v & app
v B tests

@ _init__.py
[notebeok.ipynb
[Z pyx_lib_import.py
[pyw_seript.pyx
[Z1 script_pylint.py
[Z script.py
[Z] test_mainwindow.py

@ test_tour.py

@ _init__.py
[cli_options.py
s} mac_stylesheet.qss
B mainwindow.py
@ restart.py
(5 startpy
@ tour.py

& config

& defaults

& fonts

B images

B locale

& plugins

B tests

B utils

B widgets

B windows

B workers

@ _init__.py

[3 dependencies.py

[3 interpreter.py v

Figure 1.4: project explorer

CHAPTER 1. INTRODUCTION n

1.4.3 Variable explorer

The variable explorer shows the namespace contents (all global object references,
such as variables, functions, modules, etc.) of the currently selected session, and
allows you to interact with them through a variety of GUI-based editors. For example,
variables can be listed as:

Variable explorer

+ B % &€
Name Type Size Value ~

array_uint3z uint32 (2, 2, 3) ::; ;

bars container.BarContainer 20 BarContainer object of matplotlib.container module

df DataFrame (3, 2) Column names: bools, ints

df _complex DataFrame (5, 1) Column names: @

Filename str 1 C:\ProgranData\Anaconda3\1ib\site-packages\matplotlibimpl-datal..

list_test list 2 [Dataframe, Numpy array]

long_text str 1 This is some very wery very very long text! But Spyder can show..

nrows int 1 344

r Tloate4 1 6.469949121584568

T any o e

region tuple 2 (slice, slice)

rgb floats4 (45, 45, 4) g 20 .

Figure 1.5: variables explorer

Matrices can be shown as:

CHAPTER 1. INTRODUCTION 12

Figure 1.6: matrix explorer

1.5 Troubleshooting

1.5.1 Download problems
1.5.1.1 Cause

The Anaconda installer files are large (over 300 MB), and some users have problems
with errors and interrupted downloads when downloading large files.

1.5.1.2 Solution

Download the large Anaconda installer file, and restart it if the download is interrupted
or you need to pause it.

CHAPTER 1. INTRODUCTION 13

1.5.2 No shortcuts

Afterinstalling on Windows, in the Windows Start menu | cannot see Anaconda prompt,
Anaconda Cloud and Navigator shortcuts.

1.5.2.1 Cause

This may be caused by the way Windows updates the Start menu, or by having multiple
versions of Python installed, where they are interfering with one another. Existing
Python installations, installations of Python modules in global locations, or libraries
that have the same names as Anaconda libraries can all prevent Anaconda from
working properly.

1.5.2.2 Solution
If start menu shortcuts are missing, try rebooting your computer or restarting Win-
dows Explorer.

If that doesn’t work, clear $PYTHONPATH and re-install Anaconda. Other potential
solutions are covered in the “Conflicts with system state” section of this blog post®.

1.5.3 Failed to create menus or add PATH

During installation on a Windows system, a dialog box appears that says “Failed to
create Anaconda menus, Abort Retry Ignore” or “Failed to add Anaconda to the system
PATH.” There are many possible Windows causes for this.

1.5.3.1 Solution

Try these solutions, in order:

1. Do notinstall on a PATH longer than 1024 characters.
2. Turn off anti-virus programs during install, then turn back on.

%https://www.anaconda.com/blog/developer-blog/who-you-gonna-call-halloween-tips-treats-to-
protect-you-from-ghosts-gremlins-and-software-vulnerabilities/

https://www.anaconda.com/blog/developer-blog/who-you-gonna-call-halloween-tips-treats-to-protect-you-from-ghosts-gremlins-and-software-vulnerabilities/
https://www.anaconda.com/blog/developer-blog/who-you-gonna-call-halloween-tips-treats-to-protect-you-from-ghosts-gremlins-and-software-vulnerabilities/

CHAPTER 1. INTRODUCTION 14

Uninstall all previous Python installations.

Clear all PATHs related to Python in sysdm.cpl file.
Delete any previously set up Java PATHSs.

If JDK is installed, uninstall it.

ovAWw

1.5.4 Conda: command not found
1.5.4.1 Cause

Problems with the PATH environment variable can cause “conda: command not
found” errors or a failure to load the correct versions of python.

1.5.4.2 Solution

1. Find the location of your Anaconda binary directory.

2. Inyour home directory, in the .bashrc file, add a line to add that location to
your PATH.

3. Close and then re-open your terminal windows.

E.g. a user with the user name “bob” on a Linux machine whose Anaconda binary
directory is ~/anaconda would add this line to the .bashrc file:

export PATH="/home/bob/anaconda/bin:$PATH"

1.5.5 Spyder errors
1.5.5.1 Cause

This may be caused by errors in the Spyder setting and configuration files.

1.5.5.2 Solution

1. Close and relaunch Spyder and see if the problem remains.
2. On the menu, select Start, then select Reset Spyder Settings and see if the
problem remains.

CHAPTER 1. INTRODUCTION 15

3. Close Spyder and relaunch it from the Anaconda Prompt:
1. From the Start menu, open the Anaconda Prompt.
2. At the Anaconda Prompt, enter Spyder.
3. Seeif the problem remains.
4. Delete the directory . spyder2 and then repeat the previous steps from Step 1.
Depending on your version of Windows, . spyder2 may be in C: \Documents
and Settings\Your_User_Name orin C:\Users\Your_User_Name.

Replace Your_User_Name, with your Windows user name as it ap-
pears in the Documents and Settings folder.

1.6 Managing packages

On the Navigator Environments tab, the packages table in the right column lists the
packages included in the environment selected in the left column.

Packages are managed separately for each environment. Changes
you make to packages only apply to the active environment.

Click a column heading in the table to sort the table by package
name, description, or version.

CHAPTER 1. INTRODUCTION

ﬁ Home
[search Environments a | [instalted “| chamels Updateindex.. | search pac.Q
ﬁ Environments. I el > Name v T Description Version
.~ Configurable, python 2+3
biopy alabaster O compatible sphinx theme 0.7.10
= projects (beta)
anaconda (o] A custom
snakes
o X -
N Learning anaconda-client o ﬁgraacrt;nda,org command line client 163
——) :ig;ggrl‘:;;hle executable project 0G0
a% Community
anyqt D Pyqtd/pyats compatibility layer. 0.0.8
appnope (o) 0.1.0
appscript (e} 1.0.1
<
asnicrypto [o) 0220
' .~ Abstract syntax tree for python
astroid O With inference support 2 149
~ Community-developed python
kopy) iy 2152
-~ Utilities to internationalize and
babel © localize python applications 240
Documentation backports (e} 1.0
backports.shutil-get-
Developer Blog terminal-size e 100
recdbock beautifulsoupd o SPcyrtah;rr:gllbrawdes\gned for screen- 460
bitarray (e} 08.1
You — v
L g - o] :
Create Clone Import. Remove 200 packages available

Figure 1.7: Navigator Environments

The Update Index button updates the packages table with all pack-
ages that are available in any of the enabled channels.

1.6.1 Filtering the packages table

ANACONDA NAVIGATOR

16

By default, only Installed packages are shown in the packages table. To filter the
table to show different packages, click the arrow next to Installed, then select which

packages to display: Installed, Not Installed, Upgradable or All.

Selecting the Upgradable filter lists packages that are installed and
have upgrades available.

CHAPTER 1. INTRODUCTION 17

1.6.2 Finding a package

In the Search Packages box, type the name of the package.

1.6.3 Installing a package

1. Select the Not Installed filter to list all packages that are available in the envi-
ronment’s channels but are not installed.

Only packages that are compatible with your current environment
are listed.

2. Select the name of the package you want to install, or in the Version column,
click the blue up arrow.

3. Click the Apply button.

If after installing a new package it doesn’t appear in the packages
table, select the Home tab, then click the Refresh button to reload
the packages table.

1.6.4 Upgrading a package
1. Select the Upgradable filter to list all installed packages that have upgrades
available.

2. Click the checkbox next to the package you want to upgrade, then in the menu
that appears select Mark for Upgrade.

OR
1. In the Version column, click the blue up arrow.

2. Click the Apply button.

CHAPTER 1. INTRODUCTION 18

1.6.5 Installing a different package version

1. Click the checkbox next to the package whose version you want to change.

2. Inthe menu that appears, select Mark for specific version installation. If other
versions are available for this package, they are displayed in a list.

3. Click the package version you want to install.

4. Click the Apply button.

1.6.6 Removing a package

1. Click the checkbox next to the package you want to remove.
2. Inthe menu that appears, select Mark for Removal.
3. Click the Apply button.

Chapter 2

Python

2.1 What s Python?

Python is a high-level programming language created in 1991 by Guido van Rossum. It
is known to be easy to use and language of choice for scripting and rapid application
development in many areas on most platforms.

2.1.1 What can Python do?

+ Create web applications.

» Create workflows.

« Work with database systems.

+ Handle big data and complex mathematics.

+ Rapid prototyping, or in some cases for production-ready software.

2.1.2 Why Python?

+ Python works on Windows, Mac and Linux.
+ Python has a simpler syntax compared to other popular programming lan-
guages.

19

CHAPTER 2. PYTHON 20

+ Has syntax that allows developers to write programs with fewer lines than some
other programming languages.

+ Runsis interpreted, meaning that code can be executed as soon as it is written
and that development can be fast.

« Can be treated in a procedural way, an object-orientated way or a functional
way.

2.2 Syntax

Python Syntax compared to other programming languages:

« Python was designed for readability, and has some similarities to the English
language with influence from mathematics.

+ Python uses new lines to complete a command, as opposed to other program-
ming languages which often use semicolons or parentheses.

« Python relies on indentation, using whitespace, to define scope; such as the
scope of loops, functions and classes. Other programming languages often use
curly-brackets for this purpose.

2.2.1 Python Indentations

Where in other programming languages the indentation in code is for readability only,
in Python the indentation is very important.

Python uses indentation to indicate a block of code.

if 5 > 2:

print("Five is greater than two!")

Python will give you an error if you skip the indentation.

2.2.2 Comments

Python has commenting capability for the purpose of in-code documentation.

Comments start with a # and Python will render the rest of the line as a comment:

CHAPTER 2. PYTHON 21

Thts 1s a comment.
print("Hello, World!")

2.2.3 Docstrings

Python also has extended documentation capability, called docstrings.
Docstrings can be one line, or multiline. Docstrings are also comments:
Python uses triple quotes at the beginning and end of the docstring:

"""This ©s a
multiline docstring.
print ("Hello, World!")

nmnn

2.3 Variables

2.3.1 Creating Variables

Unlike other programming languages, Python has no command for declaring a vari-
able.

Avariable is created the moment you first assign a value to it.
x =5
y = "John"

print(x)
print (y)

Variables do not need to be declared with any particular type and can even change
type after they have been set.

Xx =4 #x is of type int
x = "Sally" # = s now of type str
print(x)

What happens is that x had the reference of the value 4 but lost it by receiving the
reference of Sally. Because the reference is lost, the value 4 is also lost.

CHAPTER 2. PYTHON 22

2.3.2 Variables Names

A variable can have a short name (like x and y) or a more descriptive name (age,
carname, total_volume). Rules for Python variables:

« Must start with a letter or the underscore character.

« Cannot start with a number.

« Can only contain alpha-numeric characters and underscores (A-z, 0-9, and _).
+ Are case-sensitive (age, Age and AGE are three different variables).

Remember that variables are case-sensitive

2.3.3 Output Variables

The Python print statement is often used to output variables.
To combine both text and a variable, Python uses the + character:
x = "awesome"

print ("Python is " + x)

You can also use the + character to add a variable to another variable:

x = "Python is "
y = "awesome"
z= X+y
print(z)

For numbers, the + character works as a mathematical operator:
x =5

y = 10

print(x + y)

If you try to combine a string and a number, Python will give you an error:

x =5
.y] John n
print(x + y)

CHAPTER 2. PYTHON 23

2.4 Numbers

There are three numeric types in Python:

o int
+ float
« complex

Variables of numeric types are created when you assign a value to them:

x =1 # int
y =2.8 # float
z 1j # complex

To verify the type of any object in Python, use the type () function:

print (type(x))
print (type(y))
print (type(z))

2.41 Int

Int, or integer, is a whole number, positive or negative, without decimals, of unlimited
length:

x =1
y 35656222554887711
z -3255522

print (type(x))
print (type(y))
print (type(z))

2.4.2 Float

Float, or “floating point number” is a number, positive or negative, containing one or
more decimals:

CHAPTER 2. PYTHON

X 1.10
y=1.0
Z -35.59

print (type(x))
print (type(y))
print (type(z))

Float can also be scientific numbers with an “e” to indicate the power of 10:

x = 35e3
= 12E4
-87.7e100

<

N
I

print (type(x))
print (type(y))
print (type(z))

2.4.3 Complex

Python understands complex numbers:
X = 3+5j

y = 5]

z = -5j

print (type(x))
print (type(y))
print (type(z))

2.5 Casting

24

There may be times when you want to specify a type on to a variable. This can be done
with casting. Python is an object-orientated language, and as such it uses classes to

define data types, including its primitive types.

Casting in python is therefore done using constructor functions.

CHAPTER 2. PYTHON 25

2.5.1 CasttolInt

int () constructs aninteger number from an integer literal, a float literal (by rounding
down to the previous whole number), or astring literal (providing the string represents
a whole number):

x = int (1) # x will be 1
y = int(2.8) # y will be 2
z = int("3") # z will be 3

2.5.2 Castto Float

float () constructs a float number from an integer literal, a float literal or a string
literal (providing the string represents a float or an integer):

float (1) # x will be 1.0
float(2.8) # vy will be 2.8
float("3") # z will be 3.0
float("4.2") # w will be 4.2

= N < M
I

2.5.3 Cast to String

str() constructs a string from a wide variety of data types, including strings, integer
literals and float literals:

x = str("s1") # = will be ’si1’
y = str(2) #y will be ’2°
z = str(3.0) # z will be ’3.0°

2.6 Strings

String literals in python are surrounded by either single quotation marks, or double
quotation marks.

'hello' isthe sameas "hello".

CHAPTER 2. PYTHON 26

Strings can be output to screen using the print function. For example:
print("hello").

Like many other popular programming languages, strings in Python are arrays of
bytes representing unicode characters. However, Python does not have a character
data type, a single character is simply a string with a length of 1. Square brackets can
be used to access elements of the string.

Get the character at position 1 (remember that the first character has the position 0):
a = "Hello, World!"

print(al1])

Get the characters from position 2 to position 5 (not included):

b = "Hello, World!"

print(b[2:5])

The strip() method removes any whitespace from the beginning or the end:
a = " Hello, World! "

print(a.strip()) # returns "Hello, World!"

The 1en() method returns the length of a string:

a = "Hello, World!"

print(len(a))

The lower () method returns the string in lower case:

a = "Hello, World!"

print(a.lower())

The upper () method returns the string in upper case:

a = "Hello, World!"

print(a.upper())

The replace () method replaces a string with another string:

a = "Hello, World!"
print(a.replace("H", "J"))

CHAPTER 2. PYTHON 27

The split () method splits the string into substrings if it finds instances of the sepa-

rator:

a = "Hello, World!"
print(a.split(",")) # returns [’Hello’, ’ World!’]

2.7

Operators

Operators are used to perform operations on variables and values.

Python divides the operators in the following groups:

2.71

Arithmetic operators

Assignment operators

Comparison operators

Logical operators

Identity operators

Membership operators

Bitwise operators (will not be explained)

operations:

Arithmetic
Arithmetic operators are used with numeric values to perform common mathematical
Operator Name Example

+ Addition X+y
- Subtraction X-y

Multiplication x*y
/ Division x/y
% Modulus X%y

* %

Exponentiation X**y
// Floor division x/ly

CHAPTER 2. PYTHON

2.7.2 Assignment

Assignment operators are used as shorthand to assign values to variables:

x=25
x += 3 # equivalent to z =z + 3
X *x= 2 # equivalent to T = x ** 2

2.7.3 Comparison

Comparison operators are used to compare two values:

Operator Description Example
== Equal X==y
I= Not equal xl=y
> Greater than X>y
< Less than X<y
>= Greater than or equal to X>=y
<= Less than or equal to X<=y

2.7.4 Logical

Logical operators can be used to combine conditional statements:

Operator Description Example

and Returns True if both statements are true xandy
or Returns True if one of the statements is true xory
not Reverse the result, returns False if the result is true noty

2.7.5 Membership

CHAPTER 2. PYTHON 29

Operator Description Example
in Returns True if a sequence with the specified value is presentin ~ xiny
the object
notin Returns True if a sequence with the specified value is not xnotin
present in the object y

2.8 Collections

Three collection data types of the Python programming language are introduced:

« Listis a collection which is ordered and changeable. Allows duplicate members.

+ Tuple is a collection which is ordered and unchangeable. Allows duplicate
members.

« Dictionary is a collection which is unordered, changeable and indexed. No
duplicate members.

When choosing a collection type, it is useful to understand the properties of that type.
Choosing the right type for a particular data set could mean retention of meaning,
and, it could mean an increase in efficiency or security.

2.8.1 List

Alistis a collection which is ordered and changeable. In Python lists are written with
square brackets.

2.8.1.1 Create aList

fruits = ["apple", "banana", "cherry"]
print (fruits)

2.8.1.2 Access Iltems

You access the list items by referring to the index number.

Print the second item of the list:

CHAPTER 2. PYTHON

fruits = ["apple", "banana", "cherry"]
print(fruits([1])
2.8.1.3 Change Item Value

To change the value of a specific item, refer to the index number.

Change the second item:

fruits = ["apple", "banana", "cherry"]
fruits[1] = "blackcurrant"
print (fruits)

2.8.1.4 Loop Through a List

You can loop through the list items by using a for loop.
Print all items in the list, one by one:

fruits = ["apple", "banana", "cherry"]
for fruit in fruits:
print(x)

You will learn more about for loops in out loops section.

2.8.1.5 Check if Item Exists

To determine if a specified item is present in a list use the in keyword.

Check if “apple” is present in the list:
fruits = ["apple", "banana", "cherry"]
if "apple" in fruits:
print("Yes, 'apple' is in the fruits list")

30

CHAPTER 2. PYTHON 31

2.8.1.6 List Length

To determine how many items a list have, use the 1en () method.
Print the number of items in the list:

fruits = ["apple", "banana", "cherry"]
print(len(fruits))

2.8.1.7 Add Items

To add an item to the end of the list, use the append () method.
Using the append () method to append an item:

fruits = ["apple", "banana", "cherry"]
fruits.append("orange")

print (fruits)

To add an item at the specified index, use the insert () method.

Insert an item as the second position:

fruits = ["apple", "banana", "cherry"]
fruits.insert(l, "orange")
print (fruits)

2.8.1.8 Remove Iltem

There are two main methods to remove items from a list. The remove () method
removes the specified item:

fruits = ["apple", "banana", "cherry"]
fruits.remove("banana')
print (fruits)

The pop () method removes the specified index, or the last item if index is not speci-
fied:

CHAPTER 2. PYTHON 32

fruits = ["apple", "banana", "cherry"]
fruits.pop()
print (fruits)

2.8.1.9 Castto List

Itis also possible to use the 1ist () constructor to make a list:

fruitsAsTuple = ("apple", "banana", "cherry")
fruits = list(fruitsAsTuple)
print (fruits)

2.8.2 Tuples

A tuple is a collection which is ordered and unchangeable. In Python tuples are
written with round brackets.

2.8.2.1 Create a Tuple

fruits = ("apple", "banana", "cherry")
print (fruits)

2.8.2.2 Access Iltems

You can access tuple items by referring to the index number.
Return the item in position 1:

fruits = ("apple", "banana", "cherry")
print (fruits[1])
2.8.2.3 Change Item Value

Once a tuple is created, you cannot change its values, they are unchangeable. The
following will produce an error:

CHAPTER 2. PYTHON 33

fruits = ("apple", "banana", "cherry")
fruits[1] = "blackcurrant"

The values will remain the same:
print (fruits)

2.8.2.4 Loop Through a Tuple

You can loop through the tuple items by using a for loop.
Print all items in the tuple, one by one:

fruits = ("apple", "banana", "cherry")
for fruit in fruits:
print (fruit)

You will learn more about for loops in out loops section.

2.8.2.5 Check if Item Exists

To determine if a specified item is present in a tuple use the in keyword.
Check if “apple” is present in the tuple:

fruits = ("apple", "banana", "cherry")
if "apple" in fruits:
print("Yes, 'apple' is in the fruits tuple")

2.8.2.6 Tuple Length

To determine how many items a tuple have, use the 1en () method.
Print the number of items in the tuple:

fruits = ("apple", "banana", "cherry")
print(len(fruits))

CHAPTER 2. PYTHON 34

2.8.2.7 Add Items

Once a tuple is created, you cannot add items to it, they are unchangeable. The
following will produce an error:

fruits = ("apple", "banana", "cherry")
fruits[3] = "orange" # This will raise an error
print (fruits)

2.8.2.8 Remove ltem

Tuples are unchangeable, so you cannot remove items from it.

2.8.2.9 Castto Tuple

Itis also possible to use the tuple () constructor to make a tuple:

fruitsAsList = ["apple", "banana", "cherry"]
fruits = tuple(fruitsAsList)
print (fruits)

2.8.3 Dictionary

Adictionary is a collection which is unordered, changeable and indexed. In Python
dictionaries are written with curly brackets, and they have keys and values.

2.8.3.1 Create a Dictionary

car = {
"brand": "Ford",
"model": "Mustang",
"year": 1964

}

print (car)

CHAPTER 2. PYTHON 35

2.8.3.2 Accessing Items

You can access the items of a dictionary by referring to its key name.
Get the value of the “model” key:

model = car["model"]

2.8.3.3 Change Values

You can change the value of a specific item by referring to its key name.
Change the “year” to 2018:
car["year"] = 2018

2.8.3.4 Loop Through a Dictionary

You can loop through a dictionary by using a for loop.

When looping through a dictionary, the return value are the keys of the dictionary,
but there are methods to return the values as well.

Print all key names in the dictionary, one by one:
for key in car:
print (key)
Print all values in the dictionary, one by one:
for key in car:
print (car [key])
You can also use the values () function to return values of a dictionary:
for value in car.values():

print(value)

Loop through both keys and values, by using the items () function:

CHAPTER 2. PYTHON 36

for key, value in car.items(Q):
print (key, value)

You will learn more about for loops in out loops section.

2.8.3.5 Check if Key Exists

To determine if a specified key is present in a dictionary use the in keyword.

if "model" in car:
print("Yes, 'model' is one of the keys in car")

2.8.3.6 Dictionary Length
To determine how many items (key-value pairs) a dictionary have, use the 1en()
method.

Print the number of items in the dictionary:

print(len(car))

2.8.3.7 Adding Items

Adding an item to the dictionary is done by using a new index key and assigning a
value to it:

Print the number of items in the dictionary:

car["color"] = "red"
print (car)

2.8.3.8 Removing Items

The pop () method removes the item with the specified key name:

car.pop('"model")
print (car)

CHAPTER 2. PYTHON 37

2.9 |If... Else

2.9.1 Python Conditions and If statements

Python supports the usual logical conditions from mathematics:

« Equals:a ==

« NotEquals:a !'= b

« Lessthan:a < b

« Lessthanorequalto:a <= b

+ Greaterthan:a > b

+ Greaterthanorequalto:a >= b

These conditions can be used in several ways, most commonly in “if statements” and
loops.

An “if statement” is written by using the if keyword.

a = 33
b = 200
if b > a:

print("b is greater than a")

Inthis example we use two variables, a and b, which are used as part of the if statement
to test whether b is greater than a. As ais 33, and b is 200, we know that 200 is greater
than 33, and so we print to screen that “b is greater than a”.

2.9.2 Indentation

Python relies on indentation, using whitespace, to define scope in the code. Other
programming languages often use curly-brackets for this purpose.

If statement, without indentation (will raise an error):

a = 33
b = 200
if b > a:

print("b is greater than a")

CHAPTER 2. PYTHON 38

2.9.3 Elif

The elif keyword is pythons way of saying “if the previous conditions were not true,
then try this condition”.

a = 33
b = 33
if b > a:
print("b is greater than a")
elif a == b:
print("a and b are equal")

In this example a is equal to b, so the first condition is not true, but the e11i f condition
is true, so we print to screen that “a and b are equal”.

2.9.4 Else

The else keyword catches anything which isn’t caught by the preceding conditions.

a = 200
b = 33
if b > a:

print("b is greater than a")
elif a ==

print("a and b are equal")
else:

print("a is greater than b")

In this example a is greater to b, so the first condition is not true, also the elif
condition is not true, so we go to the else condition and print to screen that “a is
greater than b”.

You can also have an else without the elif:

a = 200
b = 33
if b > a:
print("b is greater than a")
else:
print("b is not greater than a")

CHAPTER 2. PYTHON 39

2.10 While Loops

With the while loop we can execute a set of statements as long as a condition is true.

Print i aslong as i is less than 6:

i=1

while i < 6:
print (i)
i+=1

Remember to increment i, or else the loop will continue forever.

The while loop requires relevant variables to be ready, in this example we need to
define an indexing variable, i, which we set to 1.

2.10.1 Break Statement

With the break statement we can stop the loop even if the while condition is true:

Exit the loop when i is 3:

i=1
while i < 6:
print (i)
if i ==
break
i+=1

2.10.2 Continue Statement

With the continue statement we can stop the current iteration, and continue with the
next.

Continue to the next iteration if i is 3:

CHAPTER 2. PYTHON 40

i=0
while i < 6:
i+=1
if i ==
continue
print (i)

2.11 ForLoops

Aforloopisusedforiterating overasequence (thatis eitheralist, a tuple, a dictionary,
a set, or a string).

This is less like the for keyword in other programming language, and works more
like an iterator method as found in other object-orientated programming languages.

With the for loop we can execute a set of statements, once for each item in a list,
tuple, set etc.

Print each fruit in a fruit list:

fruits = ["apple", "banana", "cherry"]
for fruit in fruits:
print (fruit)

The for loop does not require an indexing variable to set beforehand.

2.11.1 Looping Through a String

Even strings are iterable objects, they contain a sequence of characters.
Loop through the letters in the word “banana”:

for letter in "banana'":
print (letter)

CHAPTER 2. PYTHON 41

2.11.2 Break Statement

With the break statement we can stop the loop before it has looped through all the
items:

Exit the loop when x is “banana”.

fruits = ["apple", "banana", "cherry"]
for fruit in fruits:
print (fruit)
if fruit == "banana":
break

Exit the loop when x is “banana”, but this time the break comes before the print:

fruits = ["apple", "banana", "cherry"]
for fruit in fruits:
if fruit == "banana":
break
print(x)

2.11.3 Continue Statement

With the continue statement we can stop the current iteration of the loop, and
continue with the next.

Do not print banana:

fruits = ["apple", "banana", "cherry"]
for fruit in fruits:
if fruit == "banana":
continue
print(x)

2.11.4 Range Function

To loop through a set of code a specified number of times, we can use the range ()
function, The range () function returns a sequence of numbers, starting from 0 by
default, and increments by 1 (by default), and ends at a specified number. Forexample:

CHAPTER 2. PYTHON 42

for x in range(6):
print(x)

Note that range(6) is not the values of 0 to 6, but the values 0 to 5.

The range () function defaults to 0 as a starting value, however it is possible to specify
the starting value by adding a parameter: range (2, 6), which means values from 2
to 6 (but not including 6):

for x in range(2, 6):
print(x)

The range () function defaults to increment the sequence by 1, however it is possible
to specify the increment value by adding a third parameter: range (2, 30, 3):

for x in range(2, 30, 3):
print (x)

The range () and 1en () functions can be used in order to loop by index and not by
element:

fruits = ["apple", "banana", "cherry"]
for index in range(len(fruits)):
print (index)

2.11.5 Enumerate Function

Sometimes it is useful to loop through the index and element. This can be done using
the enumerate () function:

fruits = ["apple", "banana", "cherry"]
for index, fruit in enumerate(fruits):
print (index)
print (fruit)

CHAPTER 2. PYTHON 43

2.12 Functions

Afunction is a block of code which only runs when it is called.
You can pass data, known as parameters, into a function.

A function can return data as a result.

2.12.1 Creating a Function

In Python a function is defined using the def keyword:

def my_function():
print("Hello from a function")

2.12.2 Calling a Function

To call a function, use the function name followed by parenthesis:
def my_function():

print("Hello from a function")

my_function()

2.12.3 Parameters

Information can be passed to functions as parameter.

Parameters are specified after the function name, inside the parentheses. You can
add as many parameters as you want, just separate them with a comma.

The following example has a function with one parameter (name). When the function
is called, we pass along a name, which is used inside the function to greet the person:

def Greeting(name):
print ("Hello " + name)

Greeting("Dugagjin")

CHAPTER 2. PYTHON 44

Greeting("Mr. President")
Greeting("stranger")

2.12.4 Default Parameter Value

The following example shows how to use a default parameter value.
If we call the function without parameter, it uses the default value:
def sayPlace(country = "Norway"):

print("I am from " + country)

sayPlace("Sweden")
sayPlace("India")
sayPlace()
sayPlace("Brazil")

2.12.5 Return Values

To let a function return a value, use the return statement:
def doTimesFive(x):

return 5 * x

print (doTimesFive(3))
print (doTimesFive(5))
print (doTimesFive(9))

2.13 Modules

Consider a module to be the same as a code library.

Afile containing a set of functions you want to include in your application.

CHAPTER 2. PYTHON 45

2.13.1 Create a Module

To create a module just save the code you want in a file with the file extension . py.
Save this code in a file named mymodule. py:

def greeting(name):
print("Hello " + name)

2.13.2 Use a Module

Now we can use the module we just created, by using the import statement.
Import the module named mymodule, and call the greeting function:

import mymodule

mymodule.greeting("Dugagjin")

When using a function from a module, use the syntax: mod-
ule_name.function_name.

2.13.3 Variables in Module

The module can contain functions, as already described, but also variables of all types
(arrays, dictionaries, objects etc).

Save this code in the file mymodule. py:

person = {

"name": "Dugagjin",
"age": 104,
"country": "Japan"

}

Import the module named mymodule, and access the person dictionary:

CHAPTER 2. PYTHON 46

import mymodule

age = mymodule.person["age"]
print (age)

2.13.4 Naming a Module
You can name the module file whatever you like, but it must have the file extension
2.13.5 Re-naming a Module

You can create an alias when you import a module, by using the as keyword.
Create an alias for mymodule called mx:
import mymodule as mx

age = mx.person["age"]
print (age)

2.13.6 Import from Module

You can choose to import only parts from a module, by using the from keyword.
The module named mymodule has one function and one dictionary:
def greeting(name):

print("Hello, " + name)

person = {

"name": "Dugagjin",
"age": 104,
"country": "Japan"

}

Import only the person dictionary from the module:

CHAPTER 2. PYTHON

from mymodule import person

print(person["age"])

47

Chapter 3

NumPy

3.1 Whatis NumPy?

NumPy is an open-source library for scientific computing in Python. It stands for
Numerical Python. It provides a high-performance multidimensional array object,
and a collection of tools to work with. The provided tools makes complex data manip-
ulation easy. Because Python is slow in execution time, NumPy is implemented in a
low-level programming language that is able to provide the necessary performance.

Numeric, was the ancestor of NumPy, and was developed by Jim Hugunin. Another
package Numarray was also developed, and had some additional functionalities.
In 2005, Travis Oliphant created NumPy package by incorporating the features of
Numarray into Numeric. Today there are many contributors to this open source
project.

3.1.1 N Dimensional Arrays

A NumPy array is can have n dimensions, all of the same type, and is indexed by a
tuple of non-negative integers. The number of dimensions is the rank of the array.
The shape of such array is a tuple of integers giving the size of the array along each
dimension.

48

CHAPTER 3. NUMPY 49

Such array can for example be used for:

+ Mathematical and logical operations.

« Fourier transforms and routines for shape manipulation.
« Operations related to linear algebra.

+ Video and image processing.

+ Machine-learning algorithms.

The key difference between a NumPy array and a Python list is, that they are designed
to handle vectorized operations while a python list is not. That means, if you apply a
function it is performed on every item in the array, rather than on the whole array
object.

3.1.2 Using the Library

NumPy methods and objects can be used by importing the library:

import numpy

Creating an alias np for numpy will make the development more convenient:

import numpy as np

3.2 Creating a Ndarray Object

An instance of ndarray class can be constructed by different array creation routines.

3.2.1 Numpy Array

A basic ndarray can be created using numpy . array ().
For example, one dimensional array:
a = np.array([1, 2, 3])

print(a)

Or two dimensional array:

CHAPTER 3. NUMPY 50

a = np.array([[1, 2], [3, 411)
print(a)
Itis possible to force the type of the ndarray by using dtype:

a = np.array([[1, 2], [3, 4]], dtype=complex)
print(a)

3.2.2 Empty

The method numpy . empty () creates an uninitialized array of specified shape.
The following creates a 3x2 empty array:

x = np.empty([3, 2])
print(x)

The elements in the array show random values as they are not ini-
tialized.

3.2.3 Zeros

numpy . zeros () returns a new ndarray of specified size, filled with zeros.
The following creates an array of five zeros:

x = np.zeros(5)
print(x)

3.2.4 Ones

The method numpy . ones () is used to create a new ndarray of specified size, filled
with ones.

The following creates a 3x2 array of six ones:

CHAPTER 3. NUMPY 51

x = np.ones((3, 2))
print(x)

3.2.5 Full

numpy . full () is used to create an ndarray filled with a particular number.
The following creates a 2x2 array filled with 7:

x = np.full((2, 2), 7)
print (x)

3.2.6 Eye

Eye matrices refer to identity matrices. Those are created by using numpy . eye. Since
eye matrices are always square matrices only one argument is required for the shape.
The following creates a 4x4 eye matrix:

x = np.eye(4)
print(x)

3.2.7 Random

By using numpy . random. random() it is possible to create a ndarray filled with ran-
dom values between 0 and 1.

The following creates an 2x2 array filled with random values between 0 and 1:

x = np.random.random((2, 2))
print(x)

CHAPTER 3. NUMPY 52

3.2.8 Random Int

The same can be done for random integer values by using np . random.randint.
The following creates an 5x5 array filled with random values between 0 and 10:

x = np.random.randint (0, 10, (5, 5))
print(x)

3.2.9 Linspace

np.linspace() returns a new one dimensional array of a specified number of evenly
spaced points. It takes up to three arguments: starting value of the sequence, end
value of the sequence and a number of evenly spaced points to be generated.

The following creates an array from 10 to 20 with 5 evenly spaced points:

x = np.linspace(10, 20, 5)
print(x)

3.2.10 Arange

numpy . arange () is similar to Python’s inbuild range () method
The following creates an array from 10 to 20 with step 2:

X = np.arange(10, 20, 2)
print(x)

3.2.11 Logspace

numpy . Logspace () is similar to numpy . linspace (), the difference is that points
are spaced evenly on a log scale.

The following creates an array from 1to 100 with multiple of 10:

x = np.logspace(l, 100, 3)
print(x)

CHAPTER 3. NUMPY 53

3.2.12 Reshape

numpy . reshape () is used to change the shape of an array.
The following changes an 1x6 array into a 3x2 array:

y = np.arange(6)
x = np.reshape((3, 2))
print (x)

3.3 Slicing, Indexing and Conditions

Contents of ndarray object can be accessed and modified by slicing, indexing or
conditions.

3.3.1 Slicing

As in Python’s collections, the colon notation start:stop:step is used to retrieve a
part of the ndarray where step defaults to 1if it is not specified.

The following creates an array from 1to 10 with step 1and retrieves all its elements
from index 2 to 7 with step 2:

a = np.arange(10)
b = al[2:7:2]
print(b)

This example shows how to retrieve every element after index 2:

a = np.arange(10)
b = a[2:]
print(b)

The following does the opposite, takes all elements before index 2:

a = np.arange(10)
b = al:2]
print(b)

CHAPTER 3. NUMPY 54

3.3.2 Indexing

Elements can be accessed with their column and row position.
The following creates a 2x3 array and takes the elements on position (0, 0), (1, 1) and
(2,0).

x = np.array([[1, 2], [3, 4], [5, 611)
y = X[[Os 1’ 2]: [O: 1, O]]
print (y)

This example takes the corner elements of a 4x3 array:

x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 1111)
y = x[[lo, o], [3, 311, [[0, 2], [0, 2]]1]
print (y)

3.3.3 Conditions

Conditions can be used in indexing. Depending how it is used, it can modify or filter a
ndarray according the condition.

The following filters as it returns all elements that are greater than 5:

x = np.random.randint (0, 10, (5, 5))
y = x[x > 5]
print (y)

This modifies the ndarray as it assigns 0 to all values smaller than 5:

x = np.random.randint (0, 10, (5, 5))
x[x < 5] =0
print(x)

3.4 Manipulating Ndarrays

NumPy contains a collection of tools to manipulate ndarrays such as add, division,
multiplication etc.

CHAPTER 3. NUMPY 55

Normally to e.g. add or subtract both arrays must have the same shape. But doesn’t
have to thanks to the so called “broadcasting” phenomena. Broadcasting in NumPy
occurs when both shapes are not equal but one of the dimensions is.

3.4.1 Addition

The following example adds an one dimensional array to a 3x3 array using broadcast-
ing. bis added to the four arrays of a:

a = np.random.randint (0, 10, (4, 3))
b = np.array([10, 10, 10])

¢ = np.add(a, b)

c=a+b # identical

print(c)

3.4.2 Subtract

a = np.random.randint (0, 10, (3, 3))
b = np.array([10, 10, 10])

c = np.subtract(a, b)

c=a-b # identical

print(c)

3.4.3 Multiply

numpy .multiply () performs aelement-wise multiplication.

np.random.randint (0, 10, (3, 3))
np.array([10, 10, 10])
np.multiply(a, b)

a *x b # 2dentical

print(c)

O o0 o e
1]

CHAPTER 3. NUMPY 56

3.4.4 Divide

As in Python 3, numpy . divide () returns a true division. True division adjusts the
output type to present the best answer, regardless of input types.

a = np.random.randint (0, 10, (3, 3))
b = np.array([10, 10, 10])

¢ = np.divide(a, b)

c=a/b # identical

print(c)

3.4.5 Remainder

a = np.array([10, 20, 30])
b = np.array([3, 5, 7])

¢ = np.mod(a, b)

c=a'% b # identical
print(c)

3.4.6 Power

First array elements are element-wise raised to powers from the second array.

a = np.array([10, 100, 1000])
b = np.array([10, 10, 10])

c = np.power(a, b)

c = a *x b # identical
print(c)

3.4.7 Dot

numpy . dot () is for two dimensional arrays a matrix multiplication, and is for one
dimensional arrays a inner product without complex conjugation. For N dimensions
it is a sum product over the last axis of the first array and the second-to-last of the
second array.

The following does a matrix multiplication:

CHAPTER 3. NUMPY 57

a = np.array([[1, 2], [3, 411)

b = np.array([[11, 12], [13, 14]1)
c = np.dot(a, b)
print(c)

3.4.8 Cross

a = np.array([[1, 2], [3, 4]11)

b = np.array([[11, 12], [13, 1411)
c = np.cross(a, b)

print(c)

3.4.9 Transpose

a = np.array([[1, 2], [3, 4]11)
b =a.T
print(b)

3.5 Functions

3.5.1 PI
print(np.pi)

3.5.2 Sine

a = np.linspace(0, 2 * np.pi, 20)
b = np.sin(a)
print(b)

3.5.3 Cosine

a = np.linspace(0, 2 * np.pi, 20)
b = np.cos(a)
print (b)

CHAPTER 3. NUMPY

3.5.4 Tangent

a = np.linspace(0, 2 * np.pi, 20)
b = np.tan(a)
print (b)

3.5.5 Round

a = np.linspace(0, 2 * np.pi, 20)
b = np.around(a, 1) # precision
print(b)

3.5.6 Floor

a = np.linspace(0, 2 * np.pi, 20)
b = np.floor(a)
print(b)

3.5.7 Ceil

a = np.linspace(0, 2 * np.pi, 20)
b = np.ceil(a)
print(b)

3.5.8 Max

a
b = np.amax(a)
print(b)

np.array([[3, 7, 5], [8, 4, 3],

[2, 4, 911)

a = np.array([[3, 7, 5], [8, 4, 3], [2, 4, 91D)

b = np.amax(a, 1)
print(b)

3.5.9 Min

58

CHAPTER 3. NUMPY

a = np.array([[3, 7,
b = np.amin(a)
print (b)

a = np.array([[3, 7,

= np.amin(a, 1)
print(b)

3.5.10 Mean

a = np.array([[3, 7,
b = np.mean(a)
print(b)

a = np.array([[3, 7,
b = np.mean(a, 1)
print (b)

3.5.11 Median

a = np.array([[3, 7,
b = np.median(a)
print(b)

a = np.array([[3, 7,
b = np.median(a, 1)
print(b)

51,

5],

51,

51,

5],

51,

(s,

(s,

(s,

[8’

(s,

31,

3],

31,

31,

3],

31,

[2,

[2,

[2,

[2,

[2,

91D

91D

91D

91D

911

91D

59

Chapter 4

PyPlot

4.1 Whatis Pyplot?

Matplotlib is a python library used to create 2D graphs and plots by using python
scripts. It has a module named pyplot which makes things easy for plotting by provid-
ing feature to control line styles, font properties, formatting axes etc. It supports a
very wide variety of graphs and plots namely - histogram, bar charts, power spectra,
error charts etc. It is used along with NumPy to provide an environment that is an
effective open source framework.

4.2 How to Pyplot

matplotlib.pyplot is a collection of command style functions in which each
pyplot function makes some change to a figure: e.g., creates a figure, creates a
plotting area in a figure, creates a plotting area in a figure, plots some lines in a
plotting area, decorates the plot with labels, etc.

Inmatplotlib.pyplot various states are preserved across function calls, so that
it keeps track of things like the current figure and plotting area, and the plotting
functions are directed to the current axes.

60

CHAPTER 4. PYPLOT 61

We recommend browsing the official examples' gallery to have an
overview of what pyplot can do.

Generating visualizations with pyplot is very quick:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 41)
plt.ylabel('some numbers')
plt.show()

4.0 A

3.5 1

3.0 1

2.5 1

some numbers

2.0 1

1.5~

1.0~

0.0 0.5 1.0 15 2.0 2.5 3.0

Figure 4.1: line plot with only x as argument

You may be wondering why the x-axis ranges from 0-3 and the y-axis from 1-4. If
you provide a single list or array to the plot () command, matplotlib assumes itis a
sequence of y values, and automatically generates the x values for you. Since python

CHAPTER 4. PYPLOT 62

ranges start with 0, the default x vector has the same length as y but starts with 0.
Hence the x data are [0,1,2,3].

plot () is a versatile command, and will take an arbitrary number of arguments. For
example, to plot x versus y, you can issue the command:

x=[1, 2, 3, 4]
y = [1’ 4) 9: 16]
plt.plot(x, y)

16 1

14 A

12 ~

10 4

1.0 15 2.0 2.5 3.0 3.5 4.0

Figure 4.2: line plot with x and y as argument

4.3 Formatting the style of your plot

For every x, y pair of arguments, there is an optional third argument which is the
format string that indicates the color and line type of the plot. The letters and symbols

CHAPTER 4. PYPLOT 63

of the format string are from MATLAB, and you concatenate a color string with a line
style string. The default format string is ' b- "', which is a solid blue line.

The following color abbreviations are defined as:

Character Color

‘b’ Blue
‘g’ Green
‘r Red
‘¢ Cyan
‘m’ Magenta
‘y’ Yellow
‘k Black
‘w’ White

Following formatting characters can be used:

String Description

Solid line style
Dashed line style
Dash-dot line style
Dotted line style
Point marker

g Pixel marker

‘0’ Circle marker

v Triangle_down marker
o Triangle_up marker
<’ Triangle_left marker
>’ Triangle_right marker
‘7’ Tri_down marker
2’ Tri_up marker

‘3’ Tri_left marker

‘4 Tri_right marker

‘s’ Square marker

‘p’ Pentagon marker

Star marker
‘h Hexagon1 marker

CHAPTER 4. PYPLOT

String Description
‘H’ Hexagon2 marker
+’ Plus marker
x’ X marker
‘D’ Diamond marker
‘d’ Thin_diamond marker
I Vline marker

‘< Hline marker

For example, to plot the previous line with red circles, you would issue:

plt.plot([1, 2, 3, 4], [1, 4, 9, 16], 'ro')
plt.axis([0, 6, 0, 20])
plt.show()

17.5 A

15.0 ~

12.5 ~

10.0 ~

7.5 4

5.0 4

2.5 1

0.0 T T T T T

Figure 4.3: custom axis plot

64

CHAPTER 4. PYPLOT 65

See the plot () documentation? for a complete list of line styles and format strings.
The axis () command in the example above takes a list of [xmin, xmax, ymin,
ymax] and specifies the viewport of the axes.

If matplotlib were limited to working with lists, it would be fairly useless for numeric
processing. Generally, you will use numpy arrays. In fact, all sequences are converted
to numpy arrays internally. The example below illustrates a plotting several lines with
different format styles in one command using arrays.

import numpy as np

evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

red dashes, blue squares and green triangles
plt.plot(t, t, 'r——', t, t**2, 'bs', t, t**3, 'g” ')
plt.show()

Zhttps://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot

CHAPTER 4. PYPLOT 66

A
100 A A
A
80 4
A
A
60
A
A
40 4 A
A
A
201 A n®
A ..I.
]
m B
A gnB
04 ..-.---.-I-.'.'."l'.'_. __________________
T T T T T T
0 1 2 3 4 5

Figure 4.4: plot with red dots

4.4 Plotting with keyword strings

There are some instances where you have data in a format that lets you ac-
cess particular variables with strings. For example, with numpy.recarray or
pandas.DataFrame.

Matplotlib allows you provide such an object with the data keyword argument. If pro-
vided, then you may generate plots with the strings corresponding to these variables.

data = {'a': np.arange(50),
'c': np.random.randint (0, 50, 50),
'd': np.random.randn(50)}
data['b'] = datal['a']l + 10 * np.random.randn(50)

CHAPTER 4. PYPLOT

datal['d'] = np.abs(datal['d']) * 100

plt.scatter('a’,

'p', c='c', s='d', data=data)

plt.xlabel('entry a')
plt.ylabel('entry b')

plt.show()

67

60

50 A

40 -

30 A

entry b

20 A

10 4

-10

10 20 30 40
entry a

Figure 4.5: plot with keyword strings

4.5 Plotting with categorical variables

Itis also possible to create a plot using categorical variables. Matplotlib allows you to
pass categorical variables directly to many plotting functions. For example:

names = ['group_a', 'group_b', 'group_c']
values = [1, 10, 100]

CHAPTER 4. PYPLOT 68

plt.figure(l, figsize=(9, 3))

plt.subplot(131)

plt.bar(names, values)

plt.subplot (132)

plt.scatter(names, values)
plt.subplot(133)

plt.plot(names, values)
plt.suptitle('Categorical Plotting')

plt.show()
Categorical Plotting
100 100 | @100
80 4 80 - 804
60 60 60
40 4 40 4 40 4
20 4 20 A 20
L]
Je P
04 01s T A0 T T
group_a group_b group_c group_a group_b group_c group_a group_b group_c

Figure 4.6: plot with categorical variables

4.6 Controlling line properties

Lines have many attributes that you can set: linewidth,dash style,antialiased,
etc; There are several ways to set line properties.

4.6.1 Keyword args

plt.plot(x, y, linewidth=2.0)

CHAPTER 4. PYPLOT 69

4.6.2 Setter methods

Use the setter methods of a Line2D instance. plot returns a list of Line2D objects;
e.g.,linel, line2 = plot(xl, y1, x2, y2).Inthe code below we will suppose
that we have only one line so that the list returned is of length 1. We use tuple unpack-
ing with line, to get the first element of that list:

line, = plt.plot(x, y, '-')
line.set_antialiased(False) # turn off antialising

4,7 Working with multiple figures and axes

MATLAB, and pyplot, have the concept of the current figure and the current axes. All
plotting commands apply to the current axes. Below is a script to create two subplots.

def f(t):
return np.exp(-t) * np.cos(2*np.pi*t)

tl

np.arange (0.0, , 0.
t2 0

5.0 1)
np.arange(0.0, 5.0, 0.02)

plt.figure(1)
plt.subplot(211)
plt.plot(tl, £(t1), 'bo', t2, £(t2), 'k')

plt.subplot(212)
plt.plot(t2, np.cos(2%np.pi*t2), 'r--')
plt.show()

CHAPTER 4. PYPLOT 70

1.0 +

0.5 4

0.0

_0‘.5 -

LOq o Jﬂ ’y & P /
\ ! i
I\
054 P N
\ I 1
0.0 4 \ ! I

—0.5 4

_10 -

Figure 4.7: subplot

The figure() command here is optional because figure (1) will be created by
default, just as a subplot (111) will be created by default if you don’t manually spec-
ify any axes. The subplot () command specifies numrows, numcols, plot_number
where plot_number ranges from 1 to numrows * numcols. The commas in the
subplot command are optional if numrows * numcols < 10.So subplot(211) is
identical to subplot (2, 1, 1).

You can create an arbitrary number of subplots and axes. If you want to place an axes
manually, i.e., not on a rectangular grid, use the axes () command, which allows
you to specify the location as axes ([1left, bottom, width, height]) whereall
values are in fractional (0 to 1) coordinates.

You can create multiple figures by using multiple figure () calls with an increasing
figure number. Of course, each figure can contain as many axes and subplots as your

heart desires:

CHAPTER 4. PYPLOT m

import “matplotlib.pyplot™ as plt

plt.figure(1) # the first figure

plt.subplot(211) # the first subplot in the first
figure

plt.plot([1, 2, 31)

plt.subplot(212) # the second subplot in the first
figure

plt.plot([4, 5, 6])

a second figure, creates a subplot(111) by default
plt.figure(2)
plt.plot([4, 5, 6])

plt.figure(1) # figure 1 current; subplot(212)
still current

plt.subplot(211) # make subplot(211) in figurel
current

plt.title('Easy as 1, 2, 3') # subplot 211 title

You can clear the current figure with c1£ () and the current axes with cla().

If you are making lots of figures, you need to be aware of one more thing: the memory
required for a figure is not completely released until the figure is explicitly closed with
close(). Deleting all references to the figure, and/or using the window manager to
kill the window in which the figure appears on the screen, is not enough, because
pyplot maintains internal references until close () is called.

4.8 Working with text

The text () command can be used to add text in an arbitrary location, and the
xlabel (), ylabel() and title() are used to add text in the indicated locations.

mu, sigma = 100, 15
X = mu + sigma * np.random.randn(10000)

the histogram of the data

CHAPTER 4. PYPLOT 72

n, bins, patches = plt.hist(x, 50, density=1, facecolor='g',
alpha=0.75)

plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')

plt.text (60, .025, r'$\mu=100,\ \sigma=15$"')
plt.axis([40, 160, 0, 0.03])

plt.grid(True)

plt.show()

Histogram of 1Q

0.030

0.025 =100 =15

0.020

0.015

Probability

0.010

0.005

0.000 ~
40 60 80 100 120 140 160

Smarts

Figure 4.8: text on plot with custom location

Just as with with lines above, you can customize the properties by passing keyword

CHAPTER 4. PYPLOT 73

arguments into the text functions or using setp():

t = plt.xlabel('my data', fontsize=14, color='red')

4.8.1 Using mathematical expressions in text

matplotlib accepts TeX equation expressions in any text expression. For example,
you can write a TeX expression surrounded by dollar signs:

plt.title(r'$\sigma_i=15$"')

The r preceding the title string is important, it signifies that the string is a raw string
and not to treat backslashes as python escapes. matplotlib has a built-in TeX ex-
pression parser and layout engine, and ships its own math fonts. Thus you can use
mathematical text across platforms without requiring a TeX installation.

4.8.2 Annotating text

The uses of the basic text () command above place text at an arbitrary position
on the Axes. A common use for text is to annotate some feature of the plot, and
the annotate () method provides helper functionality to make annotations easy.
In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these
arguments are (x,y) tuples.

ax = plt.subplot(111)
t = np.arange(0.0, 5.0, 0.01)

S = np.cos(2*np.pix*t)
plt.plot(t, s, lw=2)

plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor='black', shrink=0.05),

)

plt.ylim(-2, 2)
plt.show()

CHAPTER 4. PYPLOT 74

2.0

1.5 4 local max

~

1.0
0.5 4
0.0 4
—0.5 4
—1.0

—1.5 1

Figure 4.9: annotate text on plot

In this basic example, both the xy (arrow tip) and xytext locations (text location) are
in data coordinates.

4.9 Logarithmic and other nonlinear axes

matplotlib.pyplot supports not only linear axis scales, but also logarithmic and
logit scales. Thisis commonly used if data spans many orders of magnitude. Changing
the scale of an axis is easy:

plt.xscale('log')

An example of four plots with the same data and different scales for the y axis is shown
below.

CHAPTER 4. PYPLOT 75

useful for ‘logit‘ scale

from matplotlib.ticker import NullFormatter
Fizing random state for reproducibility
np.random. seed(19680801)

make up some data in the interval JO, 1[

= np.random.normal (loc=0.5, scale=0.4, size=1000)
yly > 0) & (y < 1]

.sort ()

= np.arange(len(y))

Mo
I

plot with various axzes scales
plt.figure(1)

linear
plt.subplot (221)
plt.plot(x, y)
plt.yscale('linear')
plt.title('linear')
plt.grid(True)

log
plt.subplot (222)
plt.plot(x, y)
plt.yscale('log')
plt.title('log")
plt.grid(True)

symmetric log

plt.subplot (223)

plt.plot(x, y - y.mean())
plt.yscale('symlog', linthreshy=0.01)
plt.title('symlog')

plt.grid(True)

logtit
plt.subplot (224)

CHAPTER 4. PYPLOT 76

plt.plot(x, y)

plt.yscale('logit"')

plt.title('logit')

plt.grid(True)

Format the minor tick labels of the y-azis into empty strings
with

‘NullFormatter‘, to avoid cumbering the azis with too many
labels.

plt.gca() .yaxis.set_minor_formatter (NullFormatter())

Adjust the subplot layout, because the logit one may take more
space

plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10,
right=0.95, hspace=0.25,

wspace=0.35)

plt.show()

CHAPTER 4. PYPLOT 7

linear log
1.0 A 107 5
0.8]
0.6 - 10—1 E
0.4 -

0.2 |
1072 4

0.0 A T T T T] T T T T

o 250 500 750 0 250 ,%oo 750
symlog logi

o1 1-1072 3
Lo~ 0.99 3
o 0.90
0.50
—10-2 -]
10 0.10 1
—10-1 4 3
0.01 3

—lDD T T T T 3 T T T T

0 250 500 750 0 250 500 750

Figure 4.10: logarithmic plot

4.10 Controlling the legend entries

The simplest way to add legends is to add a Label= to each plot () calls, and then
call Legend (loc="upper left') whereupper left isthe location of the legend:

x = np.linspace(0, 20, 1000)
y1 = np.sin(x)
y2 = np.cos(x)

plt.plot(x, y1, '-b', label='sine')
plt.plot(x, y2, '-r', label='cosine')
plt.legend(loc="'upper left')
plt.ylim(-1.5, 2.0)

CHAPTER 4. PYPLOT

plt.show()

2.0

15F

=15
0

— sine
— cosine

10 15 20

Figure 4.11: plot with legends

Chapter 5

Pandas

5.1 Whatis Pandas?

Pandas is an open-source Python Library providing high-performance data manipula-
tion and analysis tool using its powerful data structures. The name Pandas is derived
from the word Panel Data.

In 2008, developer Wes McKinney started developing pandas when in need of high
performance, flexible tool for analysis of data.

Prior to Pandas, Python was majorly used for data munging and preparation. It had
very little contribution towards data analysis. Pandas solved this problem. Using
Pandas, we can accomplish five typical steps in the processing and analysis of data,
regardless of the origin of data — load, prepare, manipulate, model, and analyze.

Python with Pandas is used in a wide range of fields including academic and commer-
cial domains including finance, engineering, chemistry etc.

5.1.1 Key Features of Pandas
+ Fast and efficient DataFrame object with default and customized indexing.

+ Tools for loading data into in-memory data objects from different file formats.
+ Data alignment and integrated handling of missing data.

79

CHAPTER 5. PANDAS 80

+ Reshaping and pivoting of date sets.

+ Label-based slicing, indexing and subsetting of large data sets.
+ Columns from a data structure can be deleted or inserted.

« Group by data for aggregation and transformations.

« High performance merging and joining of data.

« Time Series functionality.

5.1.2 Data Structures

Pandas deals with the following three data structures:

 Series
» DataFrame
« Panel

These data structures are built on top of Numpy array, which means they are fast. The
best way to think of these data structures is that the higher dimensional data structure
is a container of its lower dimensional data structure. For example, DataFrame is a
container of Series, Panel is a container of DataFrame.

Data
Structure Dimensiddsscription
Series 1 1D labeled homogeneous array, sizeimmutable.
Data 2 General 2D labeled, size-mutable tabular structure with
Frames potentially heterogeneously typed columns.
Panel 3 General 3D labeled, size-mutable array.

Building and handling two or more dimensional arrays is a tedious task, burden is
placed on the user to consider the orientation of the data set when writing functions.
But using Pandas data structures, the mental effort of the user is reduced.

For example, with tabular data DataFrame it is more semantically helpful to think of
the index (the rows) and the columns rather than axis 0 and axis 1.

All Pandas data structures are value mutable (can be changed) and
except Series all are size mutable. Series is size immutable.

CHAPTER 5. PANDAS 81

DataFrame is widely used and one of the most important data struc-
tures. Panel and Series is used much less.
5.1.2.1 Series

Series is a one-dimensional array like structure with homogeneous data. For example,
the following series is a collection of integers 10, 23, 56, ...

o 1 2 3 4 5 6 17T 8 9
10 23 56 17 52 61 73 90 26 72

5.1.2.2 DataFrame

DataFrame is a two-dimensional array with heterogeneous data. For example:

Name Age Gender Rating

Steve 32 Male 3.45
Lia 28 Female 4.6
Vin 45 Male 3.9

Katie 38 Female 2.78

The table represents the data of a sales team of an organization with their overall
performance rating. The data is represented in rows and columns. Each column
represents an attribute and each row represents a person. The data types of the four
columns are as follows:

Column Type

sName String
sAge Integer

sGender String

sRating Float

CHAPTER 5. PANDAS 82

5.1.2.3 Panel

Panel is a three-dimensional data structure with heterogeneous data. It is hard to
represent the panel in graphical representation. But a panel can be illustrated as a
container of DataFrame. Panel will not be explained.

5.2 Series

Series is a one-dimensional labeled array capable of holding data of any type (integer,
string, float, python objects, etc.). The axis labels are collectively called index.

5.2.1 Create a Series
5.2.1.1 Empty Series

A basic series, which can be created is an empty Series.
#import the pandas library and aliasing as pd
import pandas as pd

s = pd.Series()

print(s)

output: "Series([], dtype: float64)"

5.2.1.2 From ndarray

If data is an ndarray, then index passed must be of the same length. If no index
is passed, then by default index will be range (n) where n is array length, i.e.,
[0,1,2,3... range(len(array))-1].

data = np.array(['a','b','c','d'])

s = pd.Series(data)

print(s)

Outputis:

CHAPTER 5. PANDAS 83

index value

w N =
o 00 T o

We did not pass any index, so by default, it assigned the indexes ranging from 0 to
len(data)-1,i.e., 0to 3. If we passed the index values we can see the customized
indexed values in the output:

data = np.array(['a','b','c','d'])
s = pd.Series(data,index=[100,101,102,103])
print(s)

index value

100
101
102
103

O N T o

5.2.1.3 Fromdictionary

A dictionary can be passed as input and if no index is specified, then the dictionary
keys are taken in a sorted order to construct index. If index is passed, the values in
data corresponding to the labels in the index will be pulled out.

data = {'a' : 0., 'b' : 1., 'c' : 2.}

s = pd.Series(data)

print(s)

Which gives:

index value

a 0.0
b 1.0

CHAPTER 5. PANDAS 84

index value

C 2.0

5.2.1.4 From scalar

If data is a scalar value, an index must be provided. The value will be repeated to
match the length of index:

s = pd.Series(5, index=[0, 1, 2, 3])
print(s)

Outputs:

index value
0 5

1 5
2 5
3 5

5.2.2 Retrieve with Position

Data in the series can be accessed similar to that in an ndarray.

s = pd.Series([1,2,3,4,5], index = ['a','b','c','d",'e'])
print(s[0]) # 1

Retrieve the first three elements in the Series. If a : is inserted in front of it, all items
from that index onwards will be extracted. If two parameters (with : between them) is
used, items between the two indexes (not including the stop index):

s = pd.Series([1,2,3,4,5], index = ['a','b','c','d",'e'])
print(s[:3]) # 3 4 5

CHAPTER 5. PANDAS 85

5.2.3 Retrieve with Index

A Series is like a fixed-size dictionary in that you can get and set values by index label.
s = pd.Series([1,2,3,4,5], index = ['a','b','c','d",'e'])
print(s['a']) # 1

Retrieve the first three elements in the Series. If a : is inserted in front of it, all items
from that index onwards will be extracted. If two parameters (with : between them) is
used, items between the two indexes (not including the stop index):

s = pd.Series([1,2,3,4,5], index = ['a','b','c','d','e'])
print([['a','c','d']]) # 3 4 5

5.3 DataFrame

A Data frame is a two-dimensional data structure, i.e., data is aligned in a tabular
fashion in rows and columns. You can think of it as a spreadsheet data representation.

5.3.1 Create a DataFrame
5.3.1.1 Empty DataFrame

A basic DataFrame, which can be created is an empty DataFrame.

s = pd.DataFrame ()
print(s)

output:

Columns: []
Index: []

5.3.1.2 From ndarray

The DataFrame can be created using a single list or a list of lists:

CHAPTER 5. PANDAS 86

data = [['Alex',10],['Bob',12],['Clarke',13]]
df = pd.DataFrame(data,columns=['Name', 'Age'])
print (df)

Outputis:

index Name Age

0 Alex 10.0
1 Bob 12.0
2 Clarke 13.0

Observe, the type of Age column is a floating point.

5.3.1.3 From dictionary of lists

All the ndarrays must be of same length. If index is passed, then the length of the
index should equal to the length of the arrays.

If no index is passed, then by default, index will be range (n), where n is the array
length.
data = {'Name':['Tom', 'Jack', 'Steve',
'Ricky'], 'Age':[28,34,29,42]}
df = pd.DataFrame(data,columns=['Name', 'Age'])
print (df)

Outputis:

index Name Age

0 28 Tome
1 34 Jack
2 29 Steve
3 42 Ricky

CHAPTER 5. PANDAS 87

Observe the values 0,1,2,3. They are the default index assigned to
each using the function range (n).

5.3.1.4 From list of dictionaries

List of dictionaries can be passed as input data to create a DataFrame. The dictionary
keys are by default taken as column names.

data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]

df = pd.DataFrame(data)

print (df)

Outputis:

index a b C

0 1 2 NaN
1 5 20 20.0

Column cis NaN at index 0.

5.3.1.5 From dictionary of series

Dictionary of series can be passed to form a DataFrame. The resultant index is the
union of all the series indexes passed.

data = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

df = pd.DataFrame(data)

print(df)

Outputis:

CHAPTER 5. PANDAS

index one two

0 1.0 1
1 2.0 2
2 3.0 3
3 NaN 4

For the series one, there is no label “d” passed, but in the result, for

the d label, NaN is appended with NaN.

5.3.2 Add column

Adding a new column is as easy as passing a Series:

data = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),

"two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c',

df = pd.DataFrame(data)
df ['three'] = pd.Series([10,20,30],index=["'a’','b','c'])
print (df)

Outputis:

index one two three

0 1.0 1 10.0
1 2.0 2 20.0
2 3.0 3 30.0
3 NaN 4 NaN

Adding a new column using the existing columns in DataFrame:

df ['four'] = df['one'] + df['three'l]
print(df)

Output as:

'd'1}

88

CHAPTER 5. PANDAS

index one two three four

0 1.0 1 10.0 11.0
1 2.0 2 20.0 22.0
2 3.0 3 30.0 33.0
3 NaN 4 NaN NaN

5.3.3 Delete column

Columns can be deleted:

data = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
"two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']}

df = pd.DataFrame(data)

df .pop('two')

print(df)

Outputis:

index value

one 1.0
two 2.0
2 3.0

3 NaN

5.3.4 Row selection

5.3.4.1 By label

data = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
"two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

df = pd.DataFrame(data)

print(df.loc('b'))

Outputis:

89

CHAPTER 5. PANDAS 90

index value

one 2.0
two 2.0

The result is a series with labels as column names of the DataFrame. And, the ame of
the series is the label with which it is retrieved.

5.3.4.2 By integer location
data = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
"two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

df = pd.DataFrame(data)
print(df.iloc(2))

Outputis:

index value

one 3.0
two 3.0

Multiple rows can be selected using : operator:

print(df.iloc(2:4))

Outputis:

index one two

5.3.5 Add row

Add new rows to a DataFrame using the append function. This function will append
the rows at the end.

CHAPTER 5. PANDAS 91

df = pd.DataFrame([[1, 2], [3, 4]], columns = ['a','b'])
df2 = pd.DataFrame([[5, 6], [7, 8]], columns = ['a','b'])

df = df.append(df2)

print(df)
Outputis:
index a b
0 1 2
1 3 4
0 5 6
1 7 8

The index will also append to the DataFrame. To reset the
index use the reset_index() function. For this example:
print (df.reset_index()).

5.3.6 Delete row

Use index label to delete or drop rows from a DataFrame. If label is duplicated, then
multiple rows will be dropped.

If you observe, in the above example, the labels are duplicate. Let us drop a label and
will see how many rows will get dropped.

df = pd.DataFrame([[1, 2], [3, 4]], columns = ['a','b'])
df2 = pd.DataFrame([[5, 6], [7, 8]], columns = ['a','b'])

df = df.append(df2)
df = df.drop(0)
print (df)

Outputis:

CHAPTER 5. PANDAS 92

index a b
1 3 4
1 7 8

In the above example, two rows were dropped because those two
contain the same label 0.

5.4 Basic functionality

5.4.1 Head and tail

Add new rows to a DataFrame using the append function. This function will append
the rows at the end.

head () returns the first n rows (observe the index values). The default number of
elements to display is five, but you may pass a custom number. tail () returns the
last n rows (observe the index values). The default number of elements to display is
five, but you may pass a custom number.

s = pd.Series(np.random.randn(4))
print(s.tail(2))
print(s.head(2))

5.4.2 Transpose

Returns the transpose of the DataFrame. The rows and columns will interchange:

Kl =
{'Name':pd.Series(['Tom', 'James', 'Ricky','Vin', 'Steve','Smith','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

df = pd.DataFrame(d)

print(df.T)

CHAPTER 5. PANDAS 93

The transpose of the DataFrame is:

0 1 2 3 4 5 6

Age 25 26 25 23 30 29 23
Name Tom James Ricky Vin Steve Smith Jack
Rating 4.23 3.24 398 256 32 4.6 3.8

5.4.3 Shape

Returns a tuple representing the dimensionality of the DataFrame. Tuple (a, b),
where a represents the number of rows and b represents the number of columns.

q=
{'Name':pd.Series(['Tom', 'James', 'Ricky','Vin', 'Steve','Smith','Jack']),
"Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8]1)}

df = pd.DataFrame(d)

print(df.shape) # (7, 3)

5.4.4 Size

Returns the number of elements in the DataFrame.

K =
{'Name':pd.Series(['Tom', 'James', 'Ricky','Vin', 'Steve','Smith','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

df = pd.DataFrame(d)

print(df.size) # 21

5.5 Descriptive statistics

The following table list down the important functions available on the DataFrame
object:

CHAPTER 5. PANDAS 94

function description
count () number of non-null observations
sum () sum of values
mean () mean of values
median() median of values
mode () mode of values
std O standard deviation of the values
min() minimum value
max () maximum value
abs () absolute value
prod() product of values
cumsum () cumulative Sum
cumprod () cumulative product
describe () summary of statistics

For example, sum () returns the sum of the values:

Kl =
{'Name':pd.Series(['Tom', 'James', 'Ricky','Vin','Steve', 'Smith',"'Jack’',
'Lee', 'David', 'Gasper', 'Betina', 'Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65]
}

df = pd.DataFrame(d)
print (df.sum())

Outputis:
column value
Age 382
Name TomJamesRickyVinSteveSmithJackLeeDavidGasperBe...
Rating 44.92

sum () takes one argument which is the axis to take the sum of. By default it takes the
sum for every column.

mean () returns the average value. Using the same example as above:

CHAPTER 5. PANDAS 95

print (df .mean())

Outputis:

column value

Age 31.833333
Rating 3.743333

Notice that string columns are ignored.

The mean can also be found using:
print(df['Age'] .sum() / df['Age'].count())
The describe() function computes a summary of statistics pertaining to the

DataFrame columns. It gives the count, mean, std and IQR values. Using the same
DataFrame as above:

print (df.describe())

Outputis:

Age Rating

count 12.00000 12.00000
mean 31.83333 3.743333
std 9.232682 0.661628
min 23.000000 2.560000
25% 25.000000 3.230000
50% 29.500000 3.790000
75% 35.500000 4.132500
max 51.000000 4.800000

CHAPTER 5. PANDAS 96

5.6 Sorting

Sorting a DataFrame by column:

=
{'Name':pd.Series(['Tom', 'James', 'Ricky','Vin','Steve','Smith',"'Jack’,
'Lee', 'David', 'Gasper', 'Betina', 'Andres']),
'"Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65]
+

df = pd.DataFrame(d)
print (df.sort_values(by='Age')) # DataFrame will be sorted on Age
column

5.7 Rename columns

Rename columns using rename (). Using the DataFrame as above:

df = df.rename(columns={

'Name': 'N',
'Age': 'A',
'Rating': 'R’

b

print (df)

5.8 CSV

A comma-separated values (CSV) file is a delimited text file that uses a comma to
separate values. A CSV file stores tabular data. Each line of the file is a data record.
Each record consists of one or more fields, separated by commas. The use of the
comma as a field separator is the source of the name for this file format and is called
delimiter. Other delimiters such as | can also be used for CSV files. CSV files can be
used to store our DataFrame object as a file.

CHAPTER 5. PANDAS

5.8.1 Write

To save a DataFrame as CSV file using | as delimiter/separator:

df = pd.DataFrame(
np.random.rand (10, 4),

columns=['a', 'b', 'c', 'd']
)
df .to_csv('random.csv', sep='|")
5.8.2 Read

Reading a CSV file in pandas is as easy as:

df = pd.read_csv('random.csv', delimiter='|")
print (df)

97

	Introduction
	Disclaimer
	Motivation
	Installation
	Windows
	OSX
	Linux

	Spyder IDE
	Create a project
	Project explorer
	Variable explorer

	Troubleshooting
	Download problems
	Cause
	Solution

	No shortcuts
	Cause
	Solution

	Failed to create menus or add PATH
	Solution

	Conda: command not found
	Cause
	Solution

	Spyder errors
	Cause
	Solution

	Managing packages
	Filtering the packages table
	Finding a package
	Installing a package
	Upgrading a package
	Installing a different package version
	Removing a package

	Python
	What is Python?
	What can Python do?
	Why Python?

	Syntax
	Python Indentations
	Comments
	Docstrings

	Variables
	Creating Variables
	Variables Names
	Output Variables

	Numbers
	Int
	Float
	Complex

	Casting
	Cast to Int
	Cast to Float
	Cast to String

	Strings
	Operators
	Arithmetic
	Assignment
	Comparison
	Logical
	Membership

	Collections
	List
	Create a List
	Access Items
	Change Item Value
	Loop Through a List
	Check if Item Exists
	List Length
	Add Items
	Remove Item
	Cast to List

	Tuples
	Create a Tuple
	Access Items
	Change Item Value
	Loop Through a Tuple
	Check if Item Exists
	Tuple Length
	Add Items
	Remove Item
	Cast to Tuple

	Dictionary
	Create a Dictionary
	Accessing Items
	Change Values
	Loop Through a Dictionary
	Check if Key Exists
	Dictionary Length
	Adding Items
	Removing Items

	If … Else
	Python Conditions and If statements
	Indentation
	Elif
	Else

	While Loops
	Break Statement
	Continue Statement

	For Loops
	Looping Through a String
	Break Statement
	Continue Statement
	Range Function
	Enumerate Function

	Functions
	Creating a Function
	Calling a Function
	Parameters
	Default Parameter Value
	Return Values

	Modules
	Create a Module
	Use a Module
	Variables in Module
	Naming a Module
	Re-naming a Module
	Import from Module

	NumPy
	What is NumPy?
	N Dimensional Arrays
	Using the Library

	Creating a Ndarray Object
	Numpy Array
	Empty
	Zeros
	Ones
	Full
	Eye
	Random
	Random Int
	Linspace
	Arange
	Logspace
	Reshape

	Slicing, Indexing and Conditions
	Slicing
	Indexing
	Conditions

	Manipulating Ndarrays
	Addition
	Subtract
	Multiply
	Divide
	Remainder
	Power
	Dot
	Cross
	Transpose

	Functions
	PI
	Sine
	Cosine
	Tangent
	Round
	Floor
	Ceil
	Max
	Min
	Mean
	Median

	PyPlot
	What is Pyplot?
	How to Pyplot
	Formatting the style of your plot
	Plotting with keyword strings
	Plotting with categorical variables
	Controlling line properties
	Keyword args
	Setter methods

	Working with multiple figures and axes
	Working with text
	Using mathematical expressions in text
	Annotating text

	Logarithmic and other nonlinear axes
	Controlling the legend entries

	Pandas
	What is Pandas?
	Key Features of Pandas
	Data Structures
	Series
	DataFrame
	Panel

	Series
	Create a Series
	Empty Series
	From ndarray
	From dictionary
	From scalar

	Retrieve with Position
	Retrieve with Index

	DataFrame
	Create a DataFrame
	Empty DataFrame
	From ndarray
	From dictionary of lists
	From list of dictionaries
	From dictionary of series

	Add column
	Delete column
	Row selection
	By label
	By integer location

	Add row
	Delete row

	Basic functionality
	Head and tail
	Transpose
	Shape
	Size

	Descriptive statistics
	Sorting
	Rename columns
	CSV
	Write
	Read

