

Introduction to wireless sensor networks with 6LoWPAN and Contiki

Laurent Segers (lasegers@vub.ac.be)

Telecom

Several devices "talk" to each other (e.g. webbrowser with remote server)

Embedded sensor devices with a remote application.

Communication model - OSI

	Layer	Function/Examples
Application Layers	7: Application	Webbrowsers (i.e. HTTP)
	6: Presentation	Mananges independance of data representation (e.g. encryption)
	5: Session	Manages session between local and remote application (e.g. RPC)
Packet Layers	4: Transport	UDP, TCP
	3: Network	Addressing, routing (e.g. IP)
MAC Layers	2: Data Link	Medium Access Control
	1: Physical	Wireless, wires, optics

Communication model - OSI

Wired vs. Wireless communication

<u>Wired communication</u> <u>Wireless communication</u>

Reliable communication Unreliable communication

Infrastructure No wires during deployment

Gbps speed possible Mbps speed possible

Interceptable by other devices

UDP vs. TCP

User Datagram Protocol: connectionless datatransmission (no overhead)

Transmission Control Protocol: connection oriented datatransmission (overhead)

Wireless Sensornetworks

Network of smart devices

Collaborate with other nodes in the network

Small devices

Equiped with sensors/actuators

Mostly battery powered

Use a embedded communication protocol Smart device from Libelium

Some sensornetworks communicate with the outside world

6LoWPAN

IP/Ethernet stack

6LoWPAN stack

Data/Application

Application

Data/Application

TCP/UDP/ICMP

Transport

UDP/ICMP

IP

Network

IPv6 with 6LoWPAN

Ethernet MAC

Data Link

IEEE 802.15.4 MAC

Ethernet

Physical

IEEE 802.15.4 PHY

IPv6 protocol for embedded devices

Compression/decompression at layer $3 \rightarrow$ designed for low power consumption

6LoWPAN Topology

IP-network: world wide network (internet)

Edge-router: gateway between sensornetwork and IP network

Embedded sensornetwork (Zx-nodes)

Zolertia Z1 & Contiki

Zolertia

92 kB of program flash

MSP430 microprocessor family

Digital (interruptable) IO capabilities

Image from the Zolertia website

Contiki

Event driven OS

Targeted for small devices (Zolertia Z1)

6LoWPAN stack already included with UDP functionality

Goals

Understand the principles of Contiki

Be able to program a node

Send packets from UDP-client to UDP-server (Contiki)

Send packets from sensornetwork to the outside world

Analyze network capabilities

Understand difference between single hop and multi hop networks

Be able to understand and decode packet formats